Quantcast
Channel: Recent Discussions — GATK-Forum
Viewing all articles
Browse latest Browse all 12345

VQSR annotations to include low coverage WGS

$
0
0

Hi team,

1- Intuition tells me that we should not include all the annotations listed below for VQSR of WGS with coverage < 1. Which annotations do you suggest trying?

java -jar GenomeAnalysisTK.jar \
-T VariantRecalibrator \
-R reference.fa \
-input raw_variants.vcf \
-resource:hapmap,known=false,training=true,truth=true,prior=15.0 hapmap.vcf \
-resource:omni,known=false,training=true,truth=true,prior=12.0 omni.vcf \
-resource:1000G,known=false,training=true,truth=false,prior=10.0 1000G.vcf \
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 dbsnp.vcf \
-an DP \
-an QD \
-an FS \
-an SOR \
-an MQ \
-an MQRankSum \
-an ReadPosRankSum \
-an InbreedingCoeff \
-mode SNP \
-tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 \
-recalFile recalibrate_SNP.recal \
-tranchesFile recalibrate_SNP.tranches \
-rscriptFile recalibrate_SNP_plots.R

2- For the above low coverage sample do you siggest using --ts_filter_level_99 when applying recalibration?

Thanks


Viewing all articles
Browse latest Browse all 12345

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>